
Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved. 1

Introducing TAME

TAME builds and runs software tests.

Instead of writing tests one at a time, using TAME, testers fill
out simple tables and TAME does the boring and repetitive
work of forming combinations to create dozens of useful tests
at once.

Turn these tests into automated UI tests by simply showing
TAME how to locate the UI objects, then TAME runs fully auto-
mated tests.

To illustrate how TAME builds and automates software tests,
we’ll examine a familiar activity—logging into a website. This
quick overview will demonstrate core TAME techniques: creat-
ing a workbook, identifying inputs and results, defining val-
ues, writing directions, and generating test cases. We’ll see how
TAME can generate scenarios for test planning and review
(including the Gherkin language used by Cucumber), how to

2

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

add automation instructions to a test suite, and how to run the
generated tests on multiple platforms.

Choose a Function to Test

While it’s common to analyze and design top-down, develop-
ment and testing usually proceed bottom-up. Systems divide
into processes; processes into activities; activities into units—
functions, steps, or UI pages.

The whole login activity can be thought of in three steps: a
logged out homepage, the login page, and a logged in homep-
age.

A user starts on the logged out homepage, clicks a link to go to
the login page, then a successful login takes the user to the
logged in homepage. From there the user can do other activi-
ties, such as creating new projects.

Examining the login activity, the login page itself is the most
interesting of the three, so we’ll start with that page.

3

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Don’t be a Serial Tester

So how many tests would you need to build for a login page? If
you’re like many testers and developers, you’ll likely answer
that question by creating tests one at a time.

Perhaps you’ll write these as scenarios in a form like this:

This Given-When-Then form is a common language known as
Gherkin - part of the Cucumber system.1

 Scenario: Logged Out Homepage

 Given I am on the logged out homepage

 And there is a user in good standing with ID gary@tametest.net

 And the user gary@tametest.net has password Test.123

 When I click the Log In link in the upper right corner

 Then I am on the Login page

 When I type "gary@tametest.net" into the User ID field

 And I type "Test.123" into the Password field

 And I click the blue Log In button

 Then the login is successful. I'm taken to the logged in homepage

 When I click the Hello link in, then select the Log Out menu item

 Then I am on the logged out homepage

 Scenario: Wrong Password Error

 Given I am on the logged out homepage

 And there is a user in good standing with ID gary@tametest.net

 And the user gary@tametest.net does not have password Bad-456

 When I click the Log In link in the upper right corner

 Then I am on the Login page

 When I type "gary@tametest.net" into the User ID field

 And I type "Bad-456" into the Password field

 And I click the blue Log In button

 Then I am told that I can't log in

1. Reference: The Cucumber Book

4

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

While Gherkin provides a common, easily understood, human
readable form for writing tests, you're still left with having to
create each of these tests one by one. If I have a number of sce-
narios, I'm likely doing a lot of copying and pasting. When it's
time to make changes I'll have to go through and inspect those
tests and make changes in several different places.

And then there's the problem of turning those into automated
executable tests. Often this involves testers (or automation
engineers) reading the test scenarios, then recording or writing
tests in a programming language.

TAME greatly simplifies the process of building the many test
cases needed to completely verify a software system.

Create a Workbook

To build tests for the login page, create a TAME workbook.

If you have Excel and the TAME plugin, just select the TAME
Workbook template.

5

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Name the worksheet by typing “Login Page” into cell A1. Note
how this changes the name of the tab as well.

The login page has two inputs, the user ID and the password.
Create input categories for each. Then partition the inputs into
choices representing different inputs that will produce differ-
ent behavior.

6

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

The other part of building tests is to define the expected
results. One result is a successful login. This requires entering a
good user ID and a good password before clicking the Login
button. Define the result by naming it in the top row under the
Checks header, then marking cells for the two input choices
and the event.

Entering the user ID of a user who does not exist—entering an
email address that doesn’t match a registered user —will pro-
duce an error regardless of the choice for the password. In this
case, a User ID choice is marked, but no choice is selected for
the password.

Other error results include:

• a good user ID but the wrong password for the user
• leaving the user ID blank
• leaving the password blank

Each of these are marked with sets of choices that lead to the
result.

7

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Finally, create an Event for the Login button—the user behav-
ior that triggers the Login.

8

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Generate Tests

Save the workbook and click the Generate Tests button. The
Test Viewer opens to show six different scenarios.

Conditions

Are there certain properties of the environment or the objects
within it that contribute to different outcomes? For example,
it's not just enough to have a user ID in the form of an email
address: it must also be the user ID of a real known user.

1. Successful Login
Test

Start: Login Page

Input: user in good standing for User ID

Input: correct password for Password

Event: Log In button

Check: Successful Login

2. Bad Login Error
(Password=wrong password)
Test

Start: Login Page

Input: user in good standing for User ID

Input: wrong password for Password

Event: Log In button

Check: Bad Login Error

3. Bad Login Error
(User ID=no user with this ID)
Test

Start: Login Page

Input: no user with this ID for User ID

Event: Log In button

Check: Bad Login Error

4. User ID not email error
Test

Start: Login Page

Input: not an email address for User ID

Event: Log In button

Check: User ID not email error

5. Missing User ID Error
Test

Start: Login Page

Input: blank for User ID

Event: Log In button

Check: Missing User ID Error

6. Missing Password Error
Test

Start: Login Page

Input: blank for Password

Event: Log In button

Check: Missing Password Error

9

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Likewise, the it's not enough to have a nonblank password: it
has to be the right password for the user.

While we could have just made these into additional choices of
the inputs, defining these distinct environment conditions also

10

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

signals what needs to be true and what needs to be set up
before the tests run.

Values

These descriptions are nice, but real tests have real values. To
define values, create sets of columns for each input. The col-
umn header (on row 1) is the name of the input; values are
placed below on row 2.

1. Successful Login
Test

Start: Login Page

Conditions:
 User: in good standing
 User's Password: correct password

Input: good email address for User ID

Input: not blank for Password

Event: Log In button

Check: Successful Login

2. Bad Login Error
(User's Password=wrong password)
Test

Start: Login Page

Conditions:
 User: in good standing
 User's Password: wrong password

Input: good email address for User ID

Input: not blank for Password

Event: Log In button

Check: Bad Login Error

11

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Values are entered and marked just like results.

The User ID values are

• a real user with ID gary@tametest.net
• an ID of a user not registered, charlie@tametest.net
• the special keyword “(nothing)” for a blank value. (Note

that this keyword is necessary to distinguish a blank value
from an empty cell.)

Password values include

• the correct password, Test.123
• a wrong password, Bad.456
• an empty value

12

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Regenerating the tests again (by clicking the Generate Tests
button) produces the same six tests, but this time since they
contain real values, they should be easier for a tester to follow
and replicate consistently.

1. Successful Login
Test

Start: Login Page

Conditions:
• User: in good standing
• User's Password: correct password

Input: gary@tametest.net into User ID

Input: Test.123 into Password

Event: Log In button

Check: Successful Login

2. Bad Login Error
(User's Password=wrong password)
Test

Start: Login Page

Conditions:
• User: in good standing
• User's Password: wrong password

Input: gary@tametest.net into User ID

Input: Bad-456 into Password

Event: Log In button

Check: Bad Login Error

3. Bad Login Error
(User=no user with this ID)
Test

Start: Login Page

Conditions:
• User: no user with this ID

Input: charlie@tametest.net into User ID

Input: Test.123 into Password

Event: Log In button

Check: Bad Login Error

4. User ID not email error
Test

Start: Login Page

Input: not_an_email into User ID

Input: Test.123 into Password

Event: Log In button

Check: User ID not email error

5. Missing User ID Error
Test

Start: Login Page

Input: blank for User ID

Input: Test.123 into Password

Event: Log In button

Check: Missing User ID Error

6. Missing Password Error
Test

Start: Login Page

Input: gary@tametest.net into User ID

Input: blank for Password

Event: Log In button

Check: Missing Password Error

13

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Note that good tests describe both the kind of value being used
(the name of the input choice) and the actual value.

Directions

The scenarios above are better, but they are still a bit stilted.
They do not read as smoothly as hand-written tests.

For example, the direction “Event: Log In Button” could be
written more descriptively as “Click the blue Log In button.”

By adding an Excel comment1 to the cell, this more descriptive
direction will be written into the test protocol.

14

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Cell comments can also include value templates (yes, these are
double braces) so that actual values are inserted into the direc-
tions.

These templates may also include formatting tokens for adding
currency symbols, thousands separators, and decimal points to
numbers. Similar to the format specifiers in Java and C#, these
can also be used to present date and time values.

Individual input choices may have their own cell comments.
For example, instead of “Type ‘’ into the User ID” a better

1. This is not really the original intent of comment tags in Excel, but
we’ve found this works well for its purpose.

15

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

direction would read, “Leave the User ID blank.” Comments
can also be used for describing result checks.

See how the comments make the scenarios much clearer.

Cucumber (Gherkin)

Gherkin is a little language used in the Cucumber system for
writing test scenarios. Consisting primarily of sentences writ-
ten in a Given (precondition) –When (behavior) – Then (post-

1. Successful Login
Test

Start: I am on the login page

Conditions:
• There is a user in good standing with ID

gary@tametest.net
• The user gary@tametest.net has password Test.123

Event: Click the blue Log In button

Check: The login is successful. I'm taken to the logged in
homepage

2. Bad Login Error
(User's Password=wrong password)
Test

Start: I am on the login page

Conditions:
• There is a user in good standing with ID

gary@tametest.net
• The user gary@tametest.net does not have password

Bad-456

Event: Click the blue Log In button

Check: I am told that I can't log in

3. Bad Login Error
(User=no user with this ID)
Test

Start: I am on the login page

Conditions:
• There is no user with ID charlie@tametest.net

Event: Click the blue Log In button

Check: I am told that I can't log in

4. User ID not email error
Test

Start: I am on the login page

Event: Click the blue Log In button

Check: I am told the User ID is not in the form of an email
address

5. Missing User ID Error
Test

Start: I am on the login page

Input: Leave the User ID blank

Event: Click the blue Log In button

Check: I am told the User ID is required

6. Missing Password Error
Test

Start: I am on the login page

Input: Leave the Password blank

Event: Click the blue Log In button

Check: I am told the Password is required

16

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

condition) form, it has become a popular human-readable
format for describing scenarios.

Click the Generate Gherkin button to get a Gherkin feature file.

17

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

With just this one button click, TAME has generated Cucumber
scenarios, ready for review and use by the many tools available
for interpreting and generating tests from Cucumber.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Feature: Login Demo

 A typical login page used as the initial demonstration of TAME.

 Scenario: Successful Login
 Given I am on the login page
 And there is a user in good standing with ID gary@tametest.net
 And the user gary@tametest.net has password Test.123
 When I type "gary@tametest.net" into the User ID field
 And I type "Test.123" into the Password field
 And I click the blue Log In button
 Then the login is successful. I'm taken to the logged in homepage

 Scenario: Bad Login Error (User's Password=wrong password)
 Given I am on the login page
 And there is a user in good standing with ID gary@tametest.net
 And the user gary@tametest.net does not have password Bad 456
 When I type "gary@tametest.net" into the User ID field
 And I type "Bad 456" into the Password field
 And I click the blue Log In button
 Then I am told that I can't log in

 Scenario: Bad Login Error (User=no user with this ID)
 Given I am on the login page
 And there is no user with ID charlie@tametest.net
 When I type "charlie@tametest.net" into the User ID field
 And I type "Test.123" into the Password field
 And I click the blue Log In button
 Then I am told that I can't log in

 Scenario: User ID not email error
 Given I am on the login page
 When I type "not_an_email" into the User ID field
 And I type "Test.123" into the Password field
 And I click the blue Log In button
 Then I am told the User ID is not in the form of an email address

 Scenario: Missing User ID Error
 Given I am on the login page
 When I leave the User ID blank
 And I type "Test.123" into the Password field
 And I click the blue Log In button
 Then I am told the User ID is required

 Scenario: Missing Password Error
 Given I am on the login page
 When I type "gary@tametest.net" into the User ID field
 And I leave the Password blank
 And I click the blue Log In button
 Then I am told the Password is required

18

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

TAME is a great complement to Cucumber. Without TAME,
testers need to write each individual scenario. Often this
involves a lot of copy-and-paste since the scenarios are mostly
identical. Maintaining these scenarios and keeping them con-
sistent in the face of changes can be tough. Because TAME does
the boring and repetitive work of forming combinations,
there’s no copy-and-paste. TAME workbooks follow the “DRY”
(Don’t Repeat Yourself) principle, thereby making mainte-
nance and updates a snap.

Reviewing Scenarios

Whether presented in TAME format or in Gherkin, the gener-
ated scenarios can be reviewed with the whole product team
prior to committing to feature development. The team can
decide which scenarios are important, which are safely out of
scope, and if any additional scenarios are needed. Because
TAME generates tests quickly, the workbook can be updated
and test plans generated in real-time during these reviews.

Selenium Automation

Selenium is a popular technology for automating web brows-
ers. It’s easy to use TAME to create automated tests. Just click

19

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

the button on the Excel ribbon to add a Run tab to the work-
book.

The Run tab contains places to add the Selenium instructions
for each input and result. There are also #setup and #teardown

20

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

rows for instructions to be run before and after each test case or
the whole test suite.

21

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

An easy way to get the instructions to put into the Run tab is to
record some actions using Selenium IDE, a free open source
add-in for Chrome and Firefox.

It’s not necessary to record the whole test. Just record the
actions necessary to determine the verbs and selector expres-
sions for each action. Then copy the instructions to the Run
tab.

One caveat: the TAME login demo has been built to be easy to
test. Each of the input fields, buttons, and error messages has a
unique HTML ID. Not all web applications will be so easy—but
TAME should still be able to automate them.

22

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Once the instructions are in place, click the Generate and Run
button. This opens the TAME Runner.

All of the test cases are listed on the left. Select a test case and
see its instructions in the right panel.

Choose browsers and sizes for running the tests. TAME can run
tests on any installed browser for which a Selenium driver has
been installed.

23

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Click Run to watch the tests run. The main Runner window
minimizes and is replaced by a small progress dialog in the
lower right corner. As the tests run, the target of each instruc-
tion is highlighted in blue. These are used in the screen snap-
shots placed into the test log.

When the tests complete, the Runner displays the count of
passed, failed, and not-run tests for each different run.

Double-click the result to view the log. Note the summary and
pie chart at the top of the log. Each instruction is listed for each

Instruction target
highlighted in blue

Application running in a browser window
controlled by Selenium Web Driver

Progress Dialog
with browser and size

Current test
and instruction

Progress bar
Green = success, Red = something failed

24

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

test along with a screen snapshot, the time required to run the
instruction, and whether the instruction succeeded or failed.

Combine Steps into Sequences

The individual login page is just one step in the entire login
activity. While analysis and design generally proceed top-
down, coding and testing are often done bottom-up. This
means that we start with individual units, such as functions or
single pages, test those units, and then assemble the units into
more complex sequences.

Testing with TAME follows this pattern. Now that we have a
worksheet for the login page, we can add worksheets for the
other steps in the sequence.

25

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Add tabs for the logged out homepage and the logged in home-
page. Note that each tab in TAME corresponds to a step in a
test. Even if a test goes back to the same UI page more than
once, if each step represents a different state in the test (such as
“I’m not logged in” vs. “I’m logged in”), representing those
different states as separate tabs makes test development much
easier.

Connect tabs by making result names match the names of
other tabs. For example, the result of clicking the Log In navbar
(menu) item on the Logged Out homepage is to go to the Login
page.

On the Login page, a successful login goes to the Logged In
Homepage. Instead of having to replace the very useful “Suc-
cessful Login” result name with the destination page, a little

26

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

arrow in the result cell lets the tester keep the result name and
define the next page.

The generated tests now begin at the Logged Out Homepage
and proceed to the Login page. Each test is divided into steps.

1. Logged Out Homepage
Case Setup

 open /

Step 1: Login Page

Start: I am on the logged out homepage

Event: Click the Log In link in the upper right corner

 click ID NavbarLoginLink

Step 2: Successful Login

Start: I am on the Login page

Conditions:
• There is a user in good standing with ID gary@tametest.net
• The user gary@tametest.net has password Test.123

type ID UserID "gary@tametest.net"

 type ID Password "Test.123"

Event: Click the blue Log In button

 click ID LoginButton

Step 3: Logged Out Homepage

Start: I am on the logged in homepage

Event: Click the Hello link in the upper right corner, then select the Log Out menu item

click ID NavbarHelloLink

click ID NavbarLogOutLink

27

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Updating Automation

To add the additional pages and their elements to the Run tab,
simply click the Run Tab button. The current elements are left
in place, but new rows are added for the inputs and checks in
the other two pages. Add the Selenium instructions, and you’re
ready to run complete test sequences.

Platform-Specific Instructions

If you run the Login demo on a small web browser such as the
ones on a smartphone, you’ll notice that the navbar is replaced
with the iconic three-line “hamburger menu.” To get to the
Login button, a user has to first click the hamburger menu then
click the Login button.

Adding this kind of conditional logic in most automation tools
has required either creating two separate suites of test cases

First click the
hamburger menu

Then click Log In

On a narrow browser (e.g. a smartphone)
the navbar is replaced by a “hamburger menu” and dropdown

28

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

(which then have to be separately maintained) or adding condi-
tional logic in code.

TAME makes this common use case easy. Just add the instruc-
tions for clicking the hamburger menu to the Run tab and mark
the instructions with the size(s) that require this instruction.

Now when the tests run on a regular large browser, the click is
not run. In the log file, the instruction is marked with a strike-
through to indicate that it was skipped. But on a narrow smart-
phone browser, the instruction is run. Similar methods exist for
including instructions to be run on specific browsers or plat-
forms.

Grow with New Features

TAME has been built with agile incremental development in
mind. Not only is it easy to review scenarios before committing

29

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

to stories during iteration planning, it is also easy to add ele-
ments and to tag them as related to particular user stories.

For example, to add new controls to the Login page—a Register
link, a Remember Me checkbox, and a Forgot Password but-
ton—tag the new elements with Excel names.

Assign names to cells corresponding to new features:
inputs, conditions, choices, events, and results

Describe the feature (story)

30

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

The test protocol now identifies the test cases affected by each
of these stories.

Moreover, the Runner lets you choose to run all tests or just the
tests for selected stories.

31

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Share Results with your Team

Every active TAME user can create online workspaces. Upload
workbooks and results to share those results with others in
your team.

32

Excerpt from a forthcoming book © 2020 Marc J. Balcer. All Rights Reserved.

Over time as you upload results you can track progress toward
completion as a number of tests remaining to pass.

“But wait! There’s more!”

This quick overview only covered some of TAME’s many fea-
tures. The following chapters provide more detail on how to
build test suites and to automate those tests.

• Inputs and Results
• Conditions
• Values
• Properties
• Sequences and State Models
• Automation Instructions
• Running Automated Tests

